Перевод: с русского на все языки

со всех языков на русский

снижение уровня безопасности

  • 1 снижение уровня безопасности

    2) Diplomatic term: diminution of the security

    Универсальный русско-английский словарь > снижение уровня безопасности

  • 2 безопасность безопасност·ь

    safety, security

    гарантировать безопасность — to guarantee / to ensure security

    обеспечить безопасность — to ensure / to guarantee / to safeguard security

    укреплять / усиливать безопасность — to boost / to enhance security

    система коллективной безопасности — system of collective security, collective security system

    личная безопасность — personal security, inviolability / safety of one's person

    одинаковая / равная безопасность — equal security, equality of security

    безопасность государства / страны — national / state security

    наносить ущерб безопасности страны — to be prejudicial to / to harm / to diminish the security of a country

    безопасность фланговых стран / флангов — security of flanking countries, flank security

    укреплять / усиливать гарантии безопасности — to strengthen security guarantees

    меры безопасности — security arrangements / measures

    обоюдная / равная заинтересованность в безопасности — equal security interests

    отсутствие безопасности в мире — internation-al / global / world insecurity

    Russian-english dctionary of diplomacy > безопасность безопасност·ь

  • 3 снятие с эксплуатации6

    1. decommissioning

     

    снятие с эксплуатации6
    1. Административные и технические меры, осуществляемые в целях обеспечения возможности отмены некоторых или всех мер регулирующего контроля в отношении установки (за исключением пункта захоронения (хранилища)) или некоторых ядерных установок, используемых для захоронения остатков от добычи и обработки радиоактивного материала, которые 'закрываются', а не 'снимаются с эксплуатации'). Снятие с эксплуатации, как правило, включает демонтаж установки (или ее части), однако при использовании данного термина в документах МАГАТЭ это не обязательно должно подразумеваться. Установка может быть, например, снята с эксплуатации без демонтажа, и существующие конструкции впоследствии могут быть перепрофилированы на другое использование (после дезактивации). Использование термина снятие с эксплуатации подразумевает, что дальнейшее использование установки (или ее части) для данных целей не предусматривается. Работы по снятию с эксплуатации проводятся в конце срока эксплуатации (эксплуатационного ресурса) установки с целью вывода ее из эксплуатации с должным учетом соображений, касающихся здоровья и безопасности работников и лиц из населения и защиты окружающей среды. При условии соблюдения национальных юридических и регулирующих требований установку (или остающиеся ее части) можно также считать снятыми с эксплуатации, если они включаются в новую или существующую установку, или даже если площадка, на которой они размещены, все еще находится под регулирующим контролем или ведомственным контролем. Действия должны быть такими, чтобы они обеспечивали долгосрочную защиту населения и окружающей среды, и обычно включают снижение уровня остаточных радионуклидов в материалах и на площадке установки, так чтобы материалы можно было безопасно рециклировать, повторно использовать или удалять как отходы, на которые распространяется изъятие, или в качестве радиоактивных отходов, а в отношении площадки можно было выдать разрешение на ее неограниченное использование или иное повторное использование. В случае пункта захоронения (хранилища) применяется термин закрытие. 2. [Все меры, ведущие к освобождению ядерной установки, иной, чем установка для захоронения, от регулирующего контроля. Такие меры включают процессы дезактивации и демонтажа.] (Из [5].)
    [Глоссарий МАГАТЭ по вопросам безопасности]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > снятие с эксплуатации6

  • 4 характеристика

    характеристика сущ
    performance
    акустическая характеристика
    acoustic property
    акустическая характеристика двигателя
    engine acoustic performance
    антидетонационная характеристика
    antiknock rating
    аэродинамическая характеристика
    1. aerodynamic performance
    2. aerodynamic characteristic 3. aerodynamic property аэродинамические характеристики
    aerodynamic behavior
    аэроупругая характеристика
    aeroelastic characteristic
    балансировочная характеристика
    trim characteristic
    взлетная характеристика
    1. takeoff ability
    2. takeoff performance взлетно-посадочные характеристики
    take-off and landing characteristics
    вибрационная характеристика
    vibration characteristic
    влиять на летные характеристики
    effect on flight characteristics
    высотная характеристика
    altitude performance
    высотно-скоростная характеристика
    altitude-airspeed performance
    высотные характеристики двигателя
    engine altitude performances
    диапазон полетных характеристик
    flight-perfomance range
    дренажные характеристики
    drainage characteristics
    дроссельная характеристика
    1. throttle performance
    2. throttle characteristic 3. thrust curve задавать характеристики
    schedule the performances
    информация о летно-технических характеристиках
    performance information
    координаты характеристики
    data on the performance
    летная характеристика
    1. flight performance
    2. flying property летно-технические характеристики
    1. performance codes
    2. aircraft performance characteristics летно-технические характеристики воздушного судна
    aircraft performances
    летные характеристики
    flight characteristics
    метод проверки характеристик
    perfomance check method
    навигационная характеристика
    navigation performance
    обобщенные характеристики по шуму
    generalized noise characteristics
    ограничение характеристик
    perfomance limitation
    основные характеристики
    basic characteristics
    отрицательно влиять на характеристики
    adversely affect performances
    оценка летных характеристик
    performance evaluation
    падающая характеристика
    falling response
    подвергать сомнению соответствие характеристик нормам летной годности
    reflect on airworthiness
    полет для проверки летных характеристик
    performance flight
    пологая характеристика
    flat response
    помпажная характеристика
    surge characteristic
    посадочная характеристика
    landing performance
    посадочные характеристики
    landing characteristics
    Постоянный комитет по летно-техническим характеристикам
    Standing Committee of Performance
    противоштопорные характеристики
    spin-recovery characteristics
    рабочая характеристика
    operating characteristic
    расчетная характеристика
    design characteristic
    скоростная характеристика
    1. thrust versus speed curve
    2. speed ability снижение характеристик
    performance loss
    снимать характеристики
    1. take characteristics
    2. check performances стендовая характеристика
    installation features
    технические характеристики зональной навигации
    area navigation capability
    тормозная характеристика воздушного судна
    1. aircraft braking performance
    2. aircraft stopping performance требования к эксплуатационным характеристикам
    operating performance requirements
    тяговая характеристика
    thrust characteristic
    тяговые характеристики
    propulsion performance characteristics
    усталостная характеристика
    fatigue property
    устанавливать характеристики
    establish the characteristics
    установленные характеристики
    specified characteristics
    уточнение летно-технических характеристик
    perfomance correction
    ухудшение характеристик
    deterioration in performance
    характеристика в зоне ожидания
    holding performance
    характеристика ВПП
    runway performance
    характеристика выдерживания высоты
    height-keeping performance
    характеристика затухания
    decay characteristic
    характеристика излучения звука
    sound emission characteristic
    характеристика набора высоты при полете по маршруту
    en-route climb performance
    характеристика планирования
    gliding performance
    характеристика по наддуву
    manifold pressure characteristic
    характеристика поперечной устойчивости
    lateral characteristic
    характеристика процесса горения
    combustion characteristic
    характеристика прочности материала
    material strength property
    характеристика путевой устойчивости
    directional stability characteristic
    характеристика расхода
    flow characteristic
    характеристика расхода воздуха
    air flow characteristic
    характеристика рентабельности
    break-even point
    характеристика сваливания
    stall characteristic
    характеристика спектра
    spectral characteristic
    характеристика сцепления поверхности ВПП
    runway friction characteristic
    характеристика топлива
    fuel property
    характеристика управляемости
    1. control characteristic
    2. handling characteristic характеристика устойчивости
    stability characteristic
    характеристика холостого хода
    no-load characteristic
    характеристика чувствительности к звуковому давлению
    pressure response characteristic
    характеристики авторотации
    windmilling performance
    характеристики двигателя
    engine performances
    характеристики короткого летного поля
    short-field performances
    характеристики наведения по линии пути
    track-defining characteristics
    характеристики на разворотах
    turn characteristics
    характеристики нарастания
    onset characteristics
    характеристики по шуму
    noise characteristics
    характеристики приема
    acceleration characteristic
    характеристики скороподъемности
    climb performances
    характеристики уровня безопасности
    safe features
    характеристики, установленные техническим заданием
    scheduled performances
    частотная характеристика
    frequency response
    эксплуатационная характеристика
    operating performance

    Русско-английский авиационный словарь > характеристика

  • 5 в

    аварийная ситуация в полете
    in-flight emergency
    аварийное табло в кабине экипажа
    cabin emergency light
    аварийный клапан сброса давления в системе кондиционирования
    conditioned air emergency valve
    автоматическая информация в районе аэродрома
    automatic terminal information
    автомат тяги в системе автопилота
    autopilot auto throttle
    аэровокзал в форме полумесяца
    crescent-shaped terminal
    аэродинамическая труба для испытаний на сваливание в штопор
    spin wind tunnel
    аэродинамическая труба для испытания моделей в натуральную величину
    full-scale wind tunnel
    балансировка в горизонтальном полете
    horizontal trim
    балансировка в полете
    operational trim
    безопасная дистанция в полете
    in-flight safe distance
    билет в одном направлении
    one-way ticket
    билет на полет в одном направлении
    single ticket
    боковой обзор в полете
    sideway inflight view
    в аварийной обстановке
    in emergency
    введение в вираж
    banking
    введение в действие пассажирских и грузовых тарифов
    fares and rates enforcement
    ввод в эксплуатацию
    introduction into service
    вводить воздушное судно в крен
    roll in the aircraft
    вводить в штопор
    put into the spin
    вводить в эксплуатацию
    1. go into service
    2. come into operation 3. place in service 4. enter service 5. introduce into service 6. put in service 7. put in operation вводить шестерни в зацепление
    mesh gears
    в воздухе
    1. up
    2. aloft вентилятор в кольцевом обтекателе
    duct fan
    вертолет в режиме висения
    hovering helicopter
    верхний обзор в полете
    upward inflight view
    ветер в верхних слоях атмосферы
    1. upper wind
    2. aloft wind ветер в направлении курса полета
    tailwind
    в заданном диапазоне
    within the range
    в западном направлении
    westward
    взлет в условиях плохой видимости
    low visibility takeoff
    в зоне влияния земли
    in ground effect
    в зоне действия луча
    on the beam
    видимость в полете
    flight visibility
    видимость в пределах допуска
    marginal visibility
    видимость у земли в зоне аэродрома
    aerodrome ground visibility
    визуальная оценка расстояния в полете
    distance assessment
    визуальный контакт в полете
    flight visual contact
    визуальный ориентир в полете
    flight visual cue
    в интересах безопасности
    in interests of safety
    висение в зоне влияния земли
    hovering in the ground effect
    вихрь в направлении линии полета
    line vortex
    в конце участка
    at the end of segment
    (полета) в конце хода
    at the end of stroke
    (поршня) в конце цикла
    at the end of
    в начале участка
    at the start of segment
    (полета) в начале цикла
    at the start of cycle
    в обратном направлении
    backward
    в ожидании разрешения
    pending clearance
    возвращаться в пункт вылета
    fly back
    воздух в пограничном слое
    boundary-layer air
    воздух в турбулентном состоянии
    rough air
    воздухозаборник в нижней части фюзеляжа
    belly intake
    воздушная обстановка в зоне аэродрома
    aerodrome air picture
    воздушное судно в зоне ожидания
    holding aircraft
    воздушное судно в полете
    1. making way aircraft
    2. aircraft on flight 3. in-flight aircraft воздушное судно, дозаправляемое в полете
    receiver aircraft
    воздушное судно, занесенное в реестр
    aircraft on register
    воздушное судно, находящееся в воздухе
    airborne aircraft
    воздушное судно, находящееся в эксплуатации владельца
    owner-operated aircraft
    воздушное судно, нуждающееся в помощи
    aircraft requiring assistance
    воздушное судно, прибывающее в конечный аэропорт
    terminating aircraft
    в подветренную сторону
    alee
    в поле зрения
    in sight
    в пределах
    within the frame of
    в процессе взлета
    during takeoff
    в процессе полета
    1. while in flight
    2. in flight в процессе руления
    while taxiing
    в рабочем состоянии
    operational
    в режиме
    in mode
    в режиме большого шага
    in coarse pitch
    в режиме готовности
    in alert
    в режиме малого шага
    in fine pitch
    в режиме самоориентирования
    when castoring
    время в рейсе
    1. chock-to-chock time
    2. ramp-to-ramp time 3. block-to-block hours 4. block-to-block time 5. ramp-to-ramp hours время налета в ночных условиях
    night flying time
    время налета в часах
    hour's flying time
    время фактического нахождения в воздухе
    actual airborne time
    в ряд
    abreast
    в случае задержки
    in the case of delay
    в случае происшествия
    in the event of a mishap
    в случая отказа
    in the event of malfunction
    в соответствии с техническими условиями
    in conformity with the specifications
    в состоянии бедствия
    in distress
    в состоянии готовности
    when under way
    в условиях обтекания
    airflow conditions
    в хвостовой части
    1. abaft
    2. aft вход в зону аэродрома
    1. entry into the aerodrome zone
    2. inward flight входить в глиссаду
    gain the glide path
    входить в зону глиссады
    reach the glide path
    входить в круг движения
    enter the traffic circuit
    входить в облачность
    enter clouds
    входить в разворот
    1. roll into the turn
    2. initiate the turn 3. enter the turn входить в условия
    penetrate conditions
    входить в штопор
    enter the spin
    входить в этап выравнивания
    entry into the flare
    вхожу в круг
    on the upwind leg
    в целях безопасности
    for reasons of safety
    выполнять полет в зоне ожидания
    hold over the aids
    выполнять полет в определенных условиях
    fly under conditions
    выполнять полет в режиме ожидания над аэродромом
    hold over the beacon
    выполнять установленный порядок действий в аварийной ситуации
    execute an emergency procedure
    выравнивание в линию горизонта
    levelling-off
    выравнивание при входе в створ ВПП
    runway alignment
    высота в зоне ожидания
    holding altitude
    высота в кабине
    cabin pressure
    высота плоскости ограничения препятствий в зоне взлета
    takeoff surface level
    высота полета в зоне ожидания
    holding flight level
    высотомер, показания которого выведены в ответчик
    squawk altimeter
    выход в равносигнальную зону
    bracketing
    в эксплуатации
    in service
    в эксплуатацию
    in operation
    гасить скорость в полете
    decelerate in the flight
    головокружение при полете в сплошной облачности
    cloud vertigo
    горизонт, видимый в полете
    in-flight apparent horizon
    господство в воздухе
    air supremacy
    граница высот повторного запуска в полете
    inflight restart envelope
    грубая ошибка в процессе полета
    in flight blunder
    груз, сброшенный в полете
    jettisoned load in flight
    давление в аэродинамической трубе
    wind-tunnel pressure
    давление в кабине
    cabin pressure
    давление в невозмущенном потоке
    undisturbed pressure
    давление в свободном потоке
    free-stream pressure
    давление в системе подачи топлива
    fuel supply pressure
    давление в системе стояночного тормоза
    perking pressure
    давление в скачке уплотнения
    shock pressure
    давление в спутной струе
    wake pressure
    давление в топливном баке
    tank pressure
    давление в тормозной системе
    brake pressure
    давление в точке отбора
    tapping pressure
    давление на входе в воздухозаборник
    air intake pressure
    дальность видимости в полете
    flight visual range
    дальность полета в невозмущенной атмосфере
    still-air flight range
    данные в узлах координатной сетки
    grid-point data
    данные о результатах испытания в воздухе
    air data
    двигатель, расположенный в крыле
    in-wing mounted
    двигатель, установленный в мотогондоле
    naccele-mounted engine
    двигатель, установленный в отдельной гондоле
    podded engine
    двигатель, установленный в фюзеляже
    in-board engine
    движение в зоне аэродрома
    aerodrome traffic
    движение в зоне аэропорта
    airport traffic
    действия в момент касания ВПП
    touchdown operations
    делать отметку в свидетельстве
    endorse the license
    делитель потока в заборном устройстве
    inlet splitter
    держать шарик в центре
    keep the ball centered
    дозаправка топливом в полете
    air refuelling
    дозаправлять топливом в полете
    refuel in flight
    допуск к работе в качестве пилота
    act as a pilot authority
    доставка пассажиров в аэропорт вылета
    pickup service
    единый тариф на полет в двух направлениях
    two-way fare
    завоевывать господство в воздухе
    gain the air supremacy
    задатчик высоты в кабине
    cabin altitude selector
    задержка в базовом аэропорту
    terminal delay
    зал таможенного досмотра в аэропорту
    airport customs room
    замер в полете
    inflight measurement
    заносить воздушное судно в реестр
    enter the aircraft
    запись вибрации в полете
    inflight vibration recording
    запись в формуляре
    log book entry
    запись переговоров в кабине экипажа
    cockpit voice recording
    запускать воздушное судно в производство
    put the aircraft into production
    запускать двигатель в полете
    restart the engine in flight
    запуск в воздухе
    1. air starting
    2. airstart запуск в полете
    inflight starting
    запуск в полете без включения стартера
    inflight nonassisted starting
    запуск в режиме авторотации
    windmill starting
    заход на посадку в режиме планирования
    gliding approach
    заход на посадку в условиях ограниченной видимости
    low-visibility approach
    зона движения в районе аэродрома
    aerodrome traffic zone
    изменение направления ветра в районе аэродрома
    aerodrome wind shift
    измерение шума в процессе летных испытаний
    flight test noise measurement
    иметь место в полете
    be experienced in flight
    имитация в полете
    inflight simulation
    имитация полета в натуральных условиях
    full-scale flight
    индекс опознавания в коде ответчика
    squawk ident
    индикатор обстановки в вертикальной плоскости
    vertical-situation indicator
    инструктаж при аварийной обстановке в полете
    inflight emergency instruction
    искусственные сооружения в районе аэродрома
    aerodrome culture
    испытание в аэродинамической трубе
    wind-tunnel test
    испытание в воздухе
    air trial
    испытание в гидроканале
    towing basing test
    испытание в двухмерном потоке
    two-dimensional flow test
    испытание вертолета в условиях снежного и пыльного вихрей
    rotocraft snow and dust test
    испытание воздушного судна в термобарокамере
    aircraft environmental test
    испытание в реальных условиях
    direct test
    испытание в режиме висения
    hovering test
    испытание в свободном полете
    free-flight test
    испытание двигателя в полете
    inflight engine test
    испытания в барокамере
    altitude-chamber test
    испытания по замеру нагрузки в полете
    flight stress measurement tests
    испытываемый в полете
    under flight test
    испытывать в полете
    test in flight
    исследование конфликтной ситуации в воздушном движении
    air conflict search
    канал в ступице турбины
    turbine bore
    канал передачи данных в полете
    flight data link
    карта особых явлений погоды в верхних слоях атмосферы
    high level significant weather chart
    кнопка запуска двигателя в воздухе
    flight restart button
    кок винта в сборе
    cone assy
    компенсация за отказ в перевозке
    denied boarding compensation
    компоновка кресел в салоне первого класса
    first-class seating
    компоновка кресел в салоне смешанного класса
    mixed-class seating
    компоновка кресел в салоне туристического класса
    economy-class seating
    компоновка приборной доски в кабине экипажа
    cockpit panel layout
    контракт на обслуживание в аэропорту
    airport handling contract
    контроль в зоне
    area watch
    контур уровня шума в районе аэропорта
    airport noise contour
    концевой выключатель в системе воздушного судна
    aircraft limit switch
    кривая в полярной системе координат
    polar curve
    крутящий момент воздушного винта в режиме авторотации
    propeller windmill torque
    курс в зоне ожидания
    holding course
    летать в курсовом режиме
    fly heading mode
    летать в режиме бреющего полета
    fly at a low level
    летать в светлое время суток
    fly by day
    летать в строю
    fly in formation
    летать в темное время суток
    fly at night
    летать по приборам в процессе тренировок
    fly under screen
    лететь в северном направлении
    fly northbound
    летная подготовка в условиях, приближенных к реальным
    line oriental flight training
    линия руления воздушного судна в зоне стоянки
    aircraft stand taxilane
    люк в крыле
    wing manhole
    маневр в полете
    inflight manoeuvre
    маршрут перехода в эшелона на участок захода на посадку
    feeder route
    маршрут полета в направлении от вторичных радиосредств
    track from secondary radio facility
    меры безопасности в полете
    flight safety precautions
    метеоусловия в пределах допуска
    marginal weather
    механизм для создания условий полета в нестабильной атмосфере
    rough air mechanism
    механизм открытия защелки в полете
    mechanical flight release latch
    мешать обзору в полете
    obscure inflight view
    набор высоты в крейсерском режиме
    cruise climb
    навигация в зоне подхода
    approach navigation
    нагрузка в полете
    flight load
    нагрузка в полете от поверхности управления
    flight control load
    надежность в полете
    inflight reliability
    направление в сторону подъема
    up-slope direction
    направление в сторону уклона
    down-slope direction
    направляющийся в
    bound for
    наработка в часах
    1. running hours
    2. endurance hours на участке маршрута в восточном направлении
    on the eastbound leg
    необходимые меры предосторожности в полете
    flight reasonable precautions
    неожиданное препятствие в полете
    hidden flight hazard
    неправильно оцененное расстояние в полете
    misjudged flight distance
    неправильно принятое в полете решение
    improper in-flight decision
    нижний обзор в полете
    downward inflight view
    носитель информации в виде металлической ленты
    metal tape medium
    носитель информации в виде пластиковой пленки
    plastic tape medium
    носитель информации в виде фольги
    engraved foil medium
    носитель информации в виде фотопленки
    photographic paper medium
    обзор в полете
    inflight view
    оборудование для полетов в темное время суток
    night-flying equipment
    обслуживание в процессе стоянки
    standing operation
    обслуживание пассажиров в городском аэровокзале
    city-terminal coach service
    обучение в процессе полетов
    flying training
    объем воздушных перевозка в тоннах груза
    airlift tonnage
    обязанности экипажа в аварийной обстановке
    crew emergency duty
    обязательно к выполнению в соответствии со статьей
    be compulsory Article
    ограничения, указанные в свидетельстве
    license limitations
    ожидание в процессе полета
    hold en-route
    опознавание в полете
    aerial identification
    опробование систем управления в кабине экипажа
    cockpit drill
    опыт работы в авиации
    aeronautical experience
    органы управления в кабине экипажа
    flight compartment controls
    осадки в виде крупных хлопьев снега
    snow grains precipitation
    осадки в виде ледяных крупинок
    ice pellets precipitation
    ослабление видимости в атмосфере
    atmospheric attenuation
    ослабление сигналов в атмосфере
    atmospheric loss
    ослаблять давление в пневматике
    deflate the tire
    осмотр в конце рабочего дня
    daily inspection
    особые меры в полете
    in-flight extreme care
    оставаться в горизонтальном положении
    remain level
    отводить воздух в атмосферу
    discharge air overboard
    отказ в перевозке
    1. denial of carriage
    2. denied boarding 3. bumping отработка действий на случай аварийной обстановки в аэропорту
    aerodrome emergency exercise
    отражатель в механизме реверса тяги
    power reversal ejector
    отсутствие ветра в районе
    aerodrome calm
    оценка пилотом ситуации в полете
    pilot judgement
    ошибка в настройке
    alignment error
    падение в перевернутом положении
    tip-over fall
    парить в воздухе
    sail
    перебои в зажигании
    misfire
    перебои в работе двигателя
    1. rough engine operations
    2. engine trouble переводить воздушное судно в горизонтальный полет
    put the aircraft over
    перевозка с оплатой в кредит
    collect transportation
    передача в пункте стыковки авиарейсов
    interline transfer
    передвижной диспетчерский пункт в районе ВПП
    runway control van
    передний обзор в полете
    forward inflight view
    переход в режим горизонтального полета
    puchover
    переходить в режим набора высоты
    entry into climb
    повторный запуск в полете
    flight restart
    подача топлива в систему воздушного судна
    aircraft fuel supply
    подниматься в воздух
    ago aloft
    пожар в отсеке шасси
    wheel-well fire
    поиск в условном квадрате
    square search
    полет в восточном направлении
    eastbound flight
    полет в зоне ожидания
    1. holding
    2. holding flight полет в направлении на станцию
    flight inbound the station
    полет в направлении от станции
    flight outbound the station
    полет в невозмущенной атмосфере
    still-air flight
    полет в нормальных метеоусловиях
    normal weather operation
    полет в обоих направлениях
    back-to-back flight
    полет в одном направлении
    one-way flight
    полет в пределах континента
    coast-to-coast flight
    полет в режиме висения
    hover flight
    полет в режиме ожидания
    holding operation
    полет в режиме ожидания на маршруте
    holding en-route operation
    полет в связи с особыми обстоятельствами
    special event flight
    полет в сложных метеоусловиях
    bad-weather flight
    полет в строю
    formation flight
    полет в условиях болтанки
    1. bumpy-air flight
    2. turbulent flight полет в условиях отсутствия видимости
    nonvisual flight
    полет в условиях плохой видимости
    low-visibility flight
    полет в установленной зоне
    standoff flight
    полет в установленном секторе
    sector flight
    полетное время, продолжительность полета в данный день
    flying time today
    полет по кругу в районе аэродрома
    aerodrome traffic circuit operation
    полет с дозаправкой топлива в воздухе
    refuelling flight
    полеты в районе открытого моря
    off-shore operations
    полеты в светлое время суток
    daylight operations
    полеты в темное время суток
    night operations
    положение амортизатора в обжатом состоянии
    shock strut compressed position
    положение в воздушном пространстве
    air position
    помпаж в воздухозаборнике
    air intake surge
    попадание в порыв ветра
    gust penetration
    попадание в турбулентность
    turbulence penetration
    порядок действий в аварийной обстановке
    emergency procedure
    порядок эксплуатации в зимних условиях
    snow plan
    посадка в режиме авторотации в выключенным двигателем
    power-off autorotative landing
    посадка в светлое время суток
    day landing
    посадка в сложных метеоусловиях
    bad weather landing
    посадка в темное время суток
    night landing
    потери в воздухозаборнике
    intake losses
    поток в промежуточных аэродромах
    pick-up traffic
    потолок в режиме висения
    hovering ceiling
    правила полета в аварийной обстановке
    emergency flight procedures
    представлять в закодированном виде
    submit in code
    предупреждение столкновений в воздухе
    mid air collision control
    препятствие в зоне захода на посадку
    approach area hazard
    препятствие в районе аэропорта
    airport hazard
    прибывать в зону аэродрома
    arrive over the aerodrome
    приведение в действие
    actuation
    приведение эшелонов в соответствие
    correlation of levels
    приводить в действие
    actuate
    приводить воздушное судно в состояние летной годности
    return an aircraft to flyable status
    приводить в рабочее состояние
    prepare for service
    приводить в состояние готовности
    alert to
    пригодный для полета только в светлое время суток
    available for daylight operation
    приспособление для захвата объектов в процессе полета
    flight pick-up equipment
    проверено в полете
    flight checked
    проверка в кабине экипажа
    cockpit check
    проверка в полете
    flight check
    проверка в процессе облета
    flyby check
    прогноз в графическом изображении
    pictorial forecast
    продолжительность в режиме висения
    hovering endurance
    продувать в аэродинамической трубе
    test in the wind tunnel
    производить посадку в самолет
    emplane
    происшествие в районе аэропорта
    airport-related accident
    прокладка в системе двигателя
    engine gasket
    прокладка маршрута в районе аэродрома
    terminal routing
    пропуск на вход в аэропорт
    airport laissez-passer
    просвет в облачности
    cloud gap
    пространственная ориентация в полете
    inflight spatial orientation
    пространственное положение в момент удара
    attitude at impact
    противобликовая защита в кабине
    cabin glare protection
    профиль волны в свободном поле
    free-field signature
    профиль местности в районе аэродрома
    aerodrome ground profile
    пружина распора в выпущенном положении
    downlock bungee spring
    (опоры шасси) пункт назначения, указанный в авиабилете
    ticketed destination
    пункт назначения, указанный в купоне авиабилета
    coupon destination
    работа в режиме запуска двигателя
    engine start mode
    работа только в режиме приема
    receiving only
    радиолокационный обзор в полете
    inflight radar scanning
    радиус действия радиолокатора в режиме поиска
    radar search range
    разворот в процессе планирования
    gliding turn
    разворот в режиме висения
    hovering turn
    разворот в сторону приближения
    inbound turn
    разворот в сторону удаления
    outbound turn
    размещать в воздушном судне
    fill an aircraft with
    разница в тарифах по классам
    class differential
    разрешение в процессе полета по маршруту
    en-route clearance
    разрешение на полет в зоне ожидания
    holding clearance
    расстояние в милях
    mileage
    расстояние в милях между указанными в билете пунктами
    ticketed point mileage
    расчетное время в пути
    estimated time en-route
    регистрация в зале ожидания
    concourse check
    регулятор давления в кабине
    cabin pressure regulator
    режим воздушного потока в заборнике воздуха
    inlet airflow schedule
    режим малого газа в заданных пределах
    deadband idle
    речевой регистратор переговоров в кабине экипажа
    cockpit voice recorder
    руководство по производству полетов в зоне аэродрома
    aerodrome rules
    рулежная дорожка в районе аэровокзала
    terminal taxiway
    сближение в полете
    air miss
    сваливание в штопор
    spin stall
    сдавать в багаж
    park in the baggage
    сдвиг ветра в зоне полета
    flight wind shear
    сигнал бедствия в коде ответчика
    squawk mayday
    сигнал входа в глиссаду
    on-slope signal
    сигнал действий в полете
    flight urgency signal
    сигнализация аварийной обстановки в полете
    air alert warning
    сигнал между воздушными судами в полете
    air-to-air signal
    сигнальные огни входа в створ ВПП
    runway alignment indicator lights
    система предупреждения конфликтных ситуаций в полете
    conflict alert system
    система распространения информации в определенные интервалы времени
    fixed-time dissemination system
    система регулирования температуры воздуха в кабине
    cabin temperature control system
    скольжение в направлении полета
    forwardslip
    скорость в условиях турбулентности
    1. rough-air speed
    2. rough airspeed скрытое препятствие в районе ВПП
    runway hidden hazard
    сложные метеоусловия в районе аэродрома
    aerodrome adverse weather
    служба управления движением в зоне аэродрома
    aerodrome control service
    служба управления движением в зоне аэропорта
    airport traffic service
    смесеобразование в карбюраторе
    carburetion
    с момента ввода в эксплуатацию
    since placed in service
    снежный заряд в зоне полета
    inflight snow showers
    снижение в режиме авторотации
    autorotative descent
    снижение в режиме планирования
    gliding descent
    снижение в режиме торможения
    braked descent
    снимать груз в контейнере
    discharge the cargo
    событие в результате непреднамеренных действий
    unintentional occurrence
    совершать посадку в направлении ветра
    land downwind
    согласованность в действиях
    coherence
    списание девиации в полете
    airswinging
    списание девиации компаса в полете
    air compass swinging
    списание радиодевиации в полете
    airborne error measurement
    способность выполнять посадку в сложных метеорологических условиях
    all-weather landing capability
    срок службы в часах налета
    flying life
    срываться в штопор
    1. fall into the spin
    2. fail into the spin ставить в определенное положение
    pose
    столкновение в воздухе
    1. mid-air collision
    2. aerial collision схема в зоне ожидания
    holding pattern
    схема входа в диспетчерскую зону
    entry procedure
    схема входа в зону ожидания
    holding entry procedure
    схема движения в зоне аэродрома
    aerodrome traffic pattern
    схема полета в зоне ожидания
    holding procedure
    схема полета по приборам в зоне ожидания
    instrument holding procedure
    счетчик пройденного километража в полете
    air-mileage indicator
    считывание показаний приборов в полете
    flight instrument reading
    тариф в местной валюте
    local currency fare
    тариф в одном направлении
    directional rate
    тариф для полета в одном направлении
    single fare
    тариф за перевозку грузов в специальном приспособлении для комплектования
    unit load device rate
    тариф на полет в ночное время суток
    night fare
    тариф на полет с возвратом в течение суток
    day round trip fare
    телесное повреждение в результате авиационного происшествия
    accident serious injury
    температура в данной точке
    local temperature
    температура воздуха в трубопроводе
    duct air temperature
    температура газов на входе в турбину
    turbine entry temperature
    температура на входе в турбину
    turbine inlet temperature
    траектория полета в зоне ожидания
    holding path
    трение в опорах
    bearing friction
    тренировка в барокамере
    altitude chamber drill
    турбулентность в атмосфере без облаков
    clear air turbulence
    турбулентность в облаках
    turbulence in clouds
    турбулентность в спутном следе
    wake turbulence
    тяга в полете
    flight thrust
    угроза применения взрывчатого устройства в полете
    inflight bomb threat
    удельный расход топлива на кг тяги в час
    thrust specific fuel consumption
    удерживать контакты в замкнутом положении
    hold contacts closed
    удостоверяющая запись в свидетельстве
    licence endorsement
    указания по условиям эксплуатации в полете
    inflight operational instructions
    указатель входа в створ ВПП
    runway alignment indicator
    указатель высоты в кабине
    cabin altitude indicator
    указатель местоположения в полете
    air position indicator
    указатель перепада давления в кабине
    cabin pressure indicator
    указатель уровня в баке
    tank level indicator
    уменьшение ограничений в воздушных перевозках
    air transport facilitation
    упаковывать в контейнере
    containerize
    упаковывать груз в контейнере
    containerize the cargo
    управление в зоне
    area control
    управление в зоне аэродрома
    aerodrome control
    управление в зоне захода на посадку
    approach control
    уровень шума в населенном пункте
    community noise level
    уровень шумового фона в кабине экипажа
    flight deck aural environment
    уровень шумового фона в районе аэропорта
    acoustic airport environment
    уровень электролита в аккумуляторе
    battery electrolyte level
    усилие в системе управления
    control force
    условия в полете
    in-flight conditions
    условия в районе аэродрома
    aerodrome environment
    условия в районе ВПП
    runway environment
    условия нагружения в полете
    flight loading conditions
    условное обозначение в сообщении о ходе полета
    flight report identification
    условное обозначение события в полете
    flight occurrence identification
    устанавливать наличие воздушной пробки в системе
    determine air in a system
    установка в определенное положение
    positioning
    установка в положение для захода на посадку
    approach setting
    установленные обязанности в полете
    prescribed flight duty
    установленный в гондоле
    nacelle-mounted
    устойчивость в полете
    inflight stability
    устройство отображения информации в кабине экипажа
    cockpit display
    устройство разворота в нейтральное положение
    self-centering device
    уточнение плана полета по сведениям, полученным в полете
    inflight operational planning
    ухудшение в полете
    flight deterioration
    участие в расследовании
    participation in the investigation
    форма крыла в плане
    wing planform
    характеристика в зоне ожидания
    holding performance
    цифровая система наведения в полете
    digital flight guidance system
    чартерный рейс в связи с особыми обстоятельствами
    special event charter
    число оборотов в минуту
    revolutions per minute
    чрезвычайное обстоятельство в полете
    flight emergency circumstance
    шаг в режиме торможения
    braking pitch
    шасси, убирающееся в фюзеляж
    inward retracting landing gear
    шлиц в головке винта
    screw head slot
    эксплуатировать в заданных условиях
    operate under the conditions
    эксплуатировать в соответствии с техникой безопасности
    operate safety
    этапа полета в пределах одного государства
    domestic flight stage
    этап входа в глиссаду
    glide capture phase
    этап полета, указанный в полетном купоне
    flight coupon stage
    эшелонирование в зоне ожидание
    holding stack

    Русско-английский авиационный словарь > в

  • 6 время восстановления

    1. RT
    2. restoration time
    3. recovery time
    4. recovery period

     

    время восстановления
    Продолжительность восстановления работоспособного состояния объекта.
    [ ГОСТ 27.002-89]

    время восстановления
    Часть продолжительности непланового ремонта, в течение которой непосредственно на объекте выполняют операции ремонта.
    Примечание - В международной практике соответствует термину "время активного ремонтa"(active repair time).
    [ОСТ 45.153-99]

    время восстановления
    Период времени от момента снижения уровня работоспособности или относительного уровня функционирования до момента восстановления требуемого уровня работоспособности или относительного уровня функционирования объекта
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    Тематики

    EN

    4.4. Время восстановления

    Restoration time

    Продолжительность восстановления работоспособного состояния объекта

    Источник: ГОСТ 27.002-89: Надежность в технике. Основные понятия. Термины и определения оригинал документа

    3.35 время восстановления (recovery time): Временной интервал от момента, когда на входе первичного преобразователя отмечается мгновенное снижение содержания определяемого компонента, до момента, когда его выходной сигнал достигнет заданного значения.

    Источник: ГОСТ Р 52350.29.2-2010: Взрывоопасные среды. Часть 29-2. Газоанализаторы. Требования к выбору, монтажу, применению и техническому обслуживанию газоанализаторов горючих газов и кислорода оригинал документа

    2.3 время восстановления (recovery time): Время, в течение которого производственная деятельность не осуществляется; туловище, конечности и голова полностью или частично опираются или поддерживаются на опорах либо туловище, плечи и голова находятся в нейтральном положении.

    Источник: ГОСТ Р ИСО 11226-2008: Система стандартов безопасности труда. Эргономика. Ручная обработка грузов. Статические рабочие положения. Общие требования оригинал документа

    Русско-английский словарь нормативно-технической терминологии > время восстановления

  • 7 риск

    1. risk

     

    риск
    Сочетание вероятности нанесения и степени тяжести возможных травм или другого вреда здоровью в опасной ситуации.
    [ ГОСТ Р ИСО 12100-1:2007]

    риск
    Сочетание вероятности причинения ущерба и тяжести этого ущерба.
    [ИСО / МЭК Руководство 51]
    Примечание
    Дальнейшее обсуждение этой концепции содержится в МЭК 61508-5 (приложение А).
    [ ГОСТ Р МЭК 61508-4-2007]

    риск

    Комбинация вероятностей и степени тяжести возможных травм или нанесения другого вреда здоровью в опасной ситуации.
    [ГОСТ ЕН 1070-2003]
    [ ГОСТ Р 51333-99]

    риск
    Вероятностная мера неблагоприятных последствий реализации опасностей определенного класса для объекта, отдельного человека, его имущества, населения, хозяйственных объектов, собственности, состояния окружающей среды.
    [СО 34.21.307-2005]

    риск
    Вероятность причинения вреда жизни или здоровью граждан, имуществу физических или юридических лиц, государственному или муниципальному имуществу, окружающей среде, жизни или здоровью животных и растений с учетом тяжести этого вреда
    [Федеральный закон от 27.12.2002 № 184-ФЗ «О техническом регулировании»]
    [СТО Газпром РД 2.5-141-2005]

    риск
    Вероятность причинения вреда жизни, здоровью физических лиц, окружающей среде, в том числе животным или растениям, имуществу физических или юридических лиц, государственному или муниципальному имуществу с учетом тяжести этого вреда.
    [ ГОСТ Р 52551-2006]

    риск
    Сочетание вероятности события и его последствий.
    Примечания
    1. Термин «риск» обычно используют только тогда, когда существует возможность негативных последствий.
    2. В некоторых ситуациях риск обусловлен возможностью отклонения от ожидаемого результата или события.
    3. Применительно к безопасности см. Аспекты безопасности. Правила включения в стандарты.
    [ ГОСТ Р 51897-2002]

    риск
    Сочетание вероятности случайности и тяжести возможной травмы или нанесение вреда здоровью человека в опасной ситуации.
    [ ГОСТ Р МЭК 60204-1-2007]

    риск
    Возможность нежелательного исхода в будущем, вероятностькоторого надо учитывать при анализе деятельности любых экономических субъектов (компаний, предприятий, домашних хозяйств и др.), особенно в инвестиционной деятельности, и по возможности сводить к минимуму путем принятия рациональных управленческих решений. В задачах исследования операций риск — мера несоответствия между разными возможными результатами принятия определенных стратегий (решениями задачи). При этом считается, что каждая выбираемая стратегия может привести к разным результатам и что вероятности тех или иных результатов принимаемого решения известны или могут быть оценены (в отличие от детерминированных задач, где каждая стратегия дает единственный результат, и неопределенных задач, где результаты стратегии непредсказуемы). Задачи с Р. состоят в выборе некоторой i-й альтернативы, обеспечивающей лучший результат с заданной вероятностью, например, вероятностью pi и худший — вероятностью (1 — pi). Чаще всего максимизируется математическое ожидание полезности для каждой стратегии (хотя применяются и другие критерии). При выборе стратегий учитываются два фактора: вероятность получения тех или иных результатов (в некоторых работах она называется, на наш взгляд, не вполне удачно «мерой эффективности»), и полезность этих результатов. Принято считать экономическим Р. затраты или потери экономического эффекта, связанные с реализацией определенного планового варианта в условиях, иных по сравнению с теми, при которых он (вариант) был бы оптимальным. Принято разделать финансовые риски на три главные категории: процентый, систематический и несистематический (см. соответствующие статьи). Аналогично понимание термина Р. и в других сферах бизнеса, хозяйственной деятельности. При выборе альтернатив с разной степенью Р. чрезвычайное значение имеет психологический аспект. Лица, принимающие решения (как потребители, так и производители) разделяются на при категории: расположенные к риску, нерасположенные к Р. и безразличные к нему. Например, человек, предпочитающий стабильный доход определенного размера большему по размеру, но связанному с Р. доходу, считается нерасположенным к Р. Максимальное количество денег, которое он готов заплатить, чтобы избежать риска, называется в этом случае вознаграждением или премией за риск. Каждый инвестор сталкивается с взаимосвязью желаемой прибыли от проекта и риском. Выбор между безрисковыми (таковы, напр., государственные ценные бумаги) и отличающимися более высокой ожидаемой прибылью рисковыми активами — основная задача формирования инвестиционного портфеля. В портфельной теории в качестве меры риска обычно выбирается статистический показатель «стандартное отклонение от ожидаемой доходности портфеля». Чем меньше возможное отклонение от нее, тем менее рискован портфель, тем более он надежен. Для снижения Р. («управления риском») применяются методы диверсификации производства, разного рода формы страхования, накопление резервов,получение дополнительной информации о различных вариантах экономического поведения и их возможных последствиях.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    DE

    FR

    2.19 риск (risk): Потенциальная опасность нанесения ущерба организации в результате реализации некоторой угрозы с использованием уязвимостей актива или группы активов.

    Примечание - Определяется как сочетание вероятности события и его последствий.

    Источник: ГОСТ Р ИСО/МЭК 13335-1-2006: Информационная технология. Методы и средства обеспечения безопасности. Часть 1. Концепция и модели менеджмента безопасности информационных и телекоммуникационных технологий оригинал документа

    3.5 риск (risk): Сочетание вероятности события и его последствий.

    Примечания

    1 Термин «риск « обычно применяют только тогда, когда существует возможность негативных последствий.

    2 В некоторых ситуациях риск обусловлен возможностью отклонения от ожидаемого результата.

    3 Применительно к безопасности см. ИСО Руководство 51.

    [ИСО/МЭК Руководство 73:2002, пункт 3.1.1]

    Источник: ГОСТ Р ИСО/МЭК 16085-2007: Менеджмент риска. Применение в процессах жизненного цикла систем и программного обеспечения оригинал документа

    3.56 риск (risk): Потенциальная опасность нанесения ущерба организации в результате реализации некоторой угрозы с использованием уязвимостей актива или группы активов [2].

    Примечание - Определяется как сочетание вероятности события и его последствий.

    Источник: ГОСТ Р ИСО/ТО 13569-2007: Финансовые услуги. Рекомендации по информационной безопасности

    2.12 риск (risk): Сочетание вероятности события и его последствий.

    Примечания

    1 Термин «риск» обычно используют, если существует возможность появления негативных последствий.

    2 Риск обусловлен неопределенностью, причиной которой являются недостаточная возможность прогнозировать и управлять событиями. Риск присущ любому проекту и может возникнуть в любое время его жизненного цикла. Снижение неопределенности уменьшает риск.

    Источник: ГОСТ Р ИСО 17666-2006: Менеджмент риска. Космические системы оригинал документа

    2.13 риск (risk): Сочетание вероятности причинения вреда и тяжести этого вреда ([2], пункт 3.2).

    Источник: ГОСТ Р ИСО 14971-2006: Изделия медицинские. Применение менеджмента риска к медицинским изделиям оригинал документа

    3.16 риск (risk): Воздействие неопределенности на достижение целей.

    Примечание - Адаптировано из Руководства ИСО 73:2009, определение 1.1.

    Источник: ГОСТ Р ИСО 19011-2012: Руководящие указания по аудиту систем менеджмента оригинал документа

    3.9 риск (risk): Сочетание вероятности появления опасного события и его последствий.

    Источник: ГОСТ Р 51901.11-2005: Менеджмент риска. Исследование опасности и работоспособности. Прикладное руководство оригинал документа

    3.11 риск (risk): Вероятность реализации акта незаконного вмешательства и его последствия.

    Источник: ГОСТ Р 53661-2009: Система менеджмента безопасности цепи поставок. Руководство по внедрению оригинал документа

    3.11 риск (risk): Сочетание вероятности нанесения и степени тяжести возможных травм или другого вреда здоровью в опасной ситуации.

    Источник: ГОСТ Р ИСО 12100-1-2007: Безопасность машин. Основные понятия, общие принципы конструирования. Часть 1. Основные термины, методология оригинал документа

    3.56 риск (risk): Потенциальная опасность нанесения ущерба организации в результате реализации некоторой угрозы с использованием уязвимостей актива или группы активов [2].

    Примечание - Определяется как сочетание вероятности события и его последствий.

    Источник: ГОСТ Р ИСО ТО 13569-2007: Финансовые услуги. Рекомендации по информационной безопасности

    3.97 риск (risk): Качественная или количественная вероятность проявления случайного события, рассматриваемая в связи с потенциальными последствиями отказа.

    Примечание - В количественном определении риск - это дискретная вероятность определенного отказа, умноженная на его дискретные последствия.

    Источник: ГОСТ Р 54382-2011: Нефтяная и газовая промышленность. Подводные трубопроводные системы. Общие технические требования оригинал документа

    3.8 риск (risk): Уровень последствий и вероятность случаев актов незаконного вмешательства.

    Источник: ГОСТ Р 53660-2009: Суда и морские технологии. Оценка охраны и разработка планов охраны портовых средств оригинал документа

    3.1.31 риск (risk); R: Отношение вероятных средних ежегодных потерь людей и продукции, возникающих из-за воздействия молнии, к общему количеству людей и продукции, находящихся в защищаемом здании (сооружении).

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.37 риск (risk); R: Отношение вероятных средних ежегодных потерь людей и продукции, возникающих из-за воздействия молнии, к общему количеству людей и продукции, находящихся в защищаемом здании (сооружении).

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    2.35 риск (risk): Сочетание вероятности события и масштабов его последствий, а также его воздействие на достижение целей организации.

    Примечания

    1 Термин «риск» обычно используют только тогда, когда существует возможность негативных последствий.

    2 В некоторых ситуациях риск обусловлен возможностью отклонения от ожидаемого результата.

    3 Применительно к безопасности см. [2].

    4 Риск обычно определяют по отношению к конкретной цели, поэтому для нескольких целей существует возможность оценить риск для каждого источника опасности.

    5 В качестве количественной оценки риска часто используют сумму произведений последствий на вероятность соответствующего опасного события. Однако для количественной оценки диапазона возможных последствий необходимо знание распределения вероятностей. Кроме того, может быть использовано стандартное отклонение.

    Источник: ГОСТ Р 53647.2-2009: Менеджмент непрерывности бизнеса. Часть 2. Требования оригинал документа

    2.28 риск (risk): Сочетание вероятности события и масштабов его последствий, а также его воздействие на достижение целей организации.

    Примечание

    1. Термин «риск» обычно используют только тогда, когда существует возможность негативных последствий.

    2. В некоторых ситуациях риск обусловлен возможностью отклонения от ожидаемого результата.

    3. Применительно к безопасности см. [2].

    [ИСО/МЭК Руководство 73:2009]

    4. Риск обычно определяют по отношению к конкретной цели, поэтому для нескольких целей существует возможность оценить риск для каждого источника опасности.

    5. В качестве количественной оценки риска часто используют сумму произведений последствий на вероятность соответствующего опасного события. Однако для количественной оценки диапазона возможных последствий необходимо знание распределения вероятностей. Кроме того, может быть использовано стандартное отклонение.

    Источник: ГОСТ Р 53647.1-2009: Менеджмент непрерывности бизнеса. Часть 1. Практическое руководство оригинал документа

    2.1 риск (risk): Влияние неопределенности на цели.

    Примечание 1 - Влияние - это отклонение от того, что ожидается (положительное и/или отрицательное).

    Примечание 2 - Цели могут иметь различные аспекты (например, финансовые и экологические цели и цели в отношении здоровья и безопасности) и могут применяться на различных уровнях (стратегических, в масштабах организации, проекта, продукта или процесса).

    Примечание 3 - Риск часто характеризуется ссылкой на потенциально возможные события (2.17) и последствия (2.18) или их комбинации.

    Примечание 4 - Риск часто выражают в виде комбинации последствий событий (включая изменения в обстоятельствах) и связанной с этим вероятности или возможности наступления (2.19).

    Примечание 5 - Неопределенность - это состояние, заключающееся в недостаточности, даже частичной, информации, понимания или знания относительно события, его последствий или его возможности.

    [Руководство ИСО 73:2009, определение 1.1]

    Источник: ГОСТ Р ИСО 31000-2010: Менеджмент риска. Принципы и руководство оригинал документа

    3.33 риск (risk): Следствие влияния неопределенности на достижение поставленных целей1).

    Примечание 1 - Под следствием влияния неопределенности необходимо понимать отклонение от ожидаемого результата или события (позитивное и/или негативное).

    Примечание 2 - Цели могут быть различными по содержанию (в области экономики, здоровья, экологии и т. п.) и назначению (стратегические, общеорганизационные, относящиеся к разработке проекта, конкретной продукции и процессу).

    Примечание 3 - Риск часто характеризуют путем описания возможного события и его последствий или их сочетания.

    Примечание 4 - Риск часто представляют в виде последствий возможного события (включая изменения обстоятельств) и соответствующей вероятности.

    Примечание 5 - Неопределенность - это состояние полного или частичного отсутствия информации, необходимой для понимания события, его последствий и их вероятностей.

    [Руководство ИСО/МЭК 73]

    Источник: ГОСТ Р 53647.4-2011: Менеджмент непрерывности бизнеса. Руководящие указания по обеспечению готовности к инцидентам и непрерывности деятельности оригинал документа

    3.21 риск (risk): Совокупность вероятности наступления события причинения вреда и степень тяжести этого вреда.

    [ISO/IEC Guide 51:1999, статья 3.2]


    Источник: ГОСТ Р МЭК 60086-4-2009: Батареи первичные. Часть 4. Безопасность литиевых батарей оригинал документа

    3.13 риск (risk): Совокупность вероятности наступления события причинения вреда и масштабы этого вреда.

    Источник: ГОСТ Р МЭК 60086-5-2009: Батареи первичные. Часть 5. Безопасность батарей с водным электролитом оригинал документа

    3.3 риск (risk): Вероятность наступления нежелательного события, при котором реализуется опасность.

    Примечание - Концепция риска всегда включает в себя два элемента: частоту или вероятность, с которой происходит то или иное опасное событие, и последствия данного опасного события [6].

    Источник: ГОСТ Р ЕН 340-2010: Система стандартов безопасности труда. Одежда специальная защитная. Общие технические требования

    2.114 риск (risk): Сочетание вероятности нанесения ущерба и тяжести этого ущерба.

    [ИСО 14698-1:2003, статья 3.1.16], [ИСО 14698-2:2003, статья 3.11]

    Источник: ГОСТ Р ИСО 14644-6-2010: Чистые помещения и связанные с ними контролируемые среды. Часть 6. Термины оригинал документа

    3.1.5 риск (risk): Сочетание вероятности причинения ущерба и тяжести этого ущерба [ИСО/МЭК Руководство 51].

    Примечание - Дальнейшее обсуждение этой концепции содержится в МЭК 61508-5 (приложение А).

    Источник: ГОСТ Р МЭК 61508-4-2007: Функциональная безопасность систем электрических, электронных, программируемых электронных, связанных с безопасностью. Часть 4. Термины и определения оригинал документа

    3.1 риск (risk): Сочетание вероятности события и его последствий.

    Примечания

    1 Термин «риск» используют обычно тогда, когда существует возможность негативных последствий.

    2 В некоторых ситуациях риск обусловлен возможностью отклонения от ожидаемого результата или события.

    3 Применительно к безопасности см. ГОСТ Р 51898.

    [ ГОСТ Р 51897-2002, ст. 3.3.1].

    Источник: Р 50.1.068-2009: Менеджмент риска. Рекомендации по внедрению. Часть 1. Определение области применения

    3.21 риск (risk): Сочетание вероятности того, что опасное событие произойдет или воздействие(ия) будет(ут) иметь место, и тяжести травмы или ухудшения состояния здоровья (см. 3.8), которые могут быть вызваны этим событием или воздействием(ями).

    Источник: ГОСТ Р 54934-2012: Системы менеджмента безопасности труда и охраны здоровья. Требования оригинал документа

    3.21 риск (risk): Сочетание вероятности возникновения опасного события или подверженности такому событию и тяжести травмы или заболевания (см. 3.8), которые могут наступить в результате этого события.

    Источник: ГОСТ Р 54337-2011: Системы менеджмента охраны труда в организациях, выпускающих нанопродукцию. Требования оригинал документа

    3.4 риск (risk): Сочетание вероятности получения работником возможных травм или другого вреда здоровью и степени тяжести этого вреда.

    Источник: ГОСТ Р 53454.1-2009: Эргономические процедуры оптимизации локальной мышечной нагрузки. Часть 1. Рекомендации по снижению нагрузки оригинал документа

    3.4.13 риск (risk): В конкретной ситуации комбинация вероятности причинения вреда и серьезности этого вреда.

    Источник: ГОСТ Р 54147-2010: Стратегический и инновационный менеджмент. Термины и определения оригинал документа

    3.1 риск (risk): Сочетание вероятности события и его последствий.

    Примечания

    1 Термин «риск» используют обычно тогда, когда существует возможность негативных последствий.

    2 В некоторых ситуациях риск обусловлен возможностью отклонения от ожидаемого результата или события.

    3 Применительно к безопасности см. ГОСТ Р 51898.

    [ ГОСТ Р 51897-2002, ст. 3.1.1]

    Источник: Р 50.1.069-2009: Менеджмент риска. Рекомендации по внедрению. Часть 2. Определение процесса менеджмента риска

    Русско-английский словарь нормативно-технической терминологии > риск

  • 8 Общее

    1. IV)
    2. III)
    3. II)

    F.1. Общее

    В настоящем стандарте приводится большое число общих требований, которые могут или не могут быть применены в отношении отдельной машины. Поэтому простое, без квалифицированной оценки утверждение о соответствии оборудования всем требованиям настоящего стандарта является недостоверным. Прежде чем приступить к выполнению требований настоящего стандарта, его необходимо тщательно изучить. Техническими комитетами разрабатываются стандарты на отдельные виды продукции или на отдельные продукты (тип С в СЕН) и для конкретных производителей продукции. До выхода этих стандартов следует руководствоваться настоящим стандартом посредством:

    a) установления соответствия и

    b) выбора наиболее близких понятий к требованиям соответствующих разделов, и

    c) изменения требований разделов, если необходимо там, где специфические требования на машину перекрываются другими стандартами, относящимися к данному вопросу.

    В этом случае необходимо обеспечить правильный подбор модификаций и опций без снижения уровня защиты, необходимой для машины в соответствии с оценкой рисков.

    При использовании всех трех вышеприведенных принципов рекомендуется:

    - руководствоваться соответствующими разделами и пунктами настоящего стандарта:

    1) если указано соответствие применяемой опции,

    2) если требования могут быть конкретизированы для отдельной машины или оборудования;

    - руководствоваться напрямую соответствующими стандартами, в которых требования к электрооборудованию аналогичны настоящему стандарту.

    Во всех случаях экспертизой устанавливается:

    - завершенность оценки рисков для машины;

    - прочтение и понимание всех требований настоящего стандарта;

    - правильность выбора варианта реализации требований настоящего стандарта при наличии альтернативы;

    - понимание альтернативы или специфических требований, определяемых для машины или ее эксплуатации, при отсутствии или отличии от соответствующих требований настоящего стандарта;

    - точность определения таких специфических требований.

    Приведенная на рисунке 1 блок-схема типичной машины должна быть использована в качестве отправной точки при решении данной задачи. Это определяется пунктами и разделами, имеющими отношение к специфическим требованиям к оборудованию.

    Настоящий стандарт является комплексным документом, и таблица F.1 призвана помочь в понимании применения требований настоящего стандарта к специальным машинам и установлении связей с другими стандартами по данной тематике.

    Таблица F.1 - Выбор вариантов применения требований стандарта

    Наименование раздела, пункта или подпункта

    Номер раздела, пункта или подпункта

    I)

    II)

    III)

    IV)

    Область применения

    1

    X

    ИСО 121 00 (все части) ИСО 14121 [28]

    Общие требования

    4

    X

    X

    X

    МЭК 60439

    Электрооборудование, соответствующее требованиям МЭК 60439

    4.2.2

    X

    X

    Устройство отключения питания (изолирующий распределитель)

    5.3

    X

    Цепи, на которые не распространяются общие правила по подключению к источнику питания

    5.3.5

    X

    X

    ИСО 12100 (все части)

    Предотвращение непреднамеренных пусков, изоляция

    5.4, 5.5, 5.6

    X

    X

    X

    ИСО 14118 [13]

    Защита от поражения электрическим током

    6

    X

    МЭК 60364-4-41

    Аварийное управление

    9.2.5.4

    X

    X

    ИСО 13850

    Двуручное управление

    9.2.6.2

    X

    X

    ИСО 13851 [14]

    Дистанционное управление

    9.2.7

    X

    X

    X

    Функции управления в случае отказа

    9.4

    X

    X

    X

    ИСО 14121 [28]

    Датчики положения

    10.1.4

    X

    X

    X

    ИСО 14119 [29]

    Цвета и маркировка операционного интерфейса

    10.2, 10.3, 10.4

    X

    X

    МЭК 60073

    Устройства аварийной остановки

    10.7

    X

    X

    ИСО 13850

    Устройства аварийного отключения

    10.8

    X

    Аппаратура управления, защита от внешних воздействий

    10.1.3, 11.3

    X

    X

    X

    МЭК 60529

    Идентификация проводов

    13.2

    X

    Подтверждение соответствия (испытания и проверка)

    18

    X

    X

    X

    Дополнительные требования (опросный лист)

    приложение В

    X

    X

    «X» обозначены разделы, пункты и подпункты настоящего стандарта, которые могут быть применены при следующих условиях:

    I) применение приведенных в разделе, пункте или подпункте материалов;

    II) использование дополнительных специфических требований;

    III) использование других требований;

    IV) использование других стандартов, в которых требования к электрооборудованию аналогичны настоящему стандарту.

    <2>Приложение G

    Таблица G.1 иллюстрирует сравнение поперечных сечений проводников в Американском сортаменте проволоки (AWG) с квадратными миллиметрами, квадратными дюймами и круговыми милами.

    Таблица G.1 - Сравнение размеров проводников

    Номерной размер,

    Номер диаметра

    Площадь поперечного сечения

    Сопротивление медного провода при постоянном токе при 20°С,

    Круговой мил

    мм2

    дюйм2

    0,2

    0,196

    0,000304

    91,62

    387

    24

    0,205

    0,000317

    87,60

    404

    0,3

    0,283

    0,000438

    63,46

    558

    22

    0,324

    0,000504

    55,44

    640

    0,5

    0,500

    0,000775

    36,70

    987

    20

    0,519

    0,000802

    34,45

    1020

    0,75

    0,750

    0,001162

    24,80

    1480

    18

    0,823

    0,001272

    20,95

    1620

    1,0

    1,000

    0,001550

    18,20

    1973

    16

    1,31

    0,002026

    13,19

    2580

    1,5

    1,500

    0,002325

    12,20

    2960

    14

    2,08

    0,003228

    8,442

    4110

    2,5

    2,500

    0,003875

    7,56

    4934

    12

    3,31

    0,005129

    5,315

    6530

    4

    4,000

    0,006200

    4,700

    7894

    10

    5,26

    0,008152

    3,335

    10380

    6

    6,000

    0,009300

    3,110

    11841

    8

    8,37

    0,012967

    2,093

    16510

    10

    10,000

    0,001550

    1,840

    19735

    6

    13,3

    0,020610

    1,320

    26240

    16

    16,000

    0,024800

    1,160

    31576

    4

    21,1

    0,032780

    0,8295

    41740

    25

    25,000

    0,038800

    0,7340

    49339

    2

    33,6

    0,052100

    0,5211

    66360

    35

    35,000

    0,054200

    0,5290

    69073

    1

    42,4

    0,065700

    0,4139

    83690

    50

    47,000

    0,072800

    0,3910

    92756

    Сопротивление при температурах, отличных от 20 °С, вычисляют по формуле:

    R = RI[1 + 0,00393(t - 20)],

    где RI - сопротивление при 20°С;

    R - сопротивление при температуре t°C.

    <2>Приложение Н

    Таблица Н.1

    Обозначение ссылочного международного стандарта

    Обозначение и наименование соответствующего национального стандарта

    МЭК 60034-1

    ГОСТ 28330-89 Машины электрические асинхронные мощностью от 1 до 400 кВт включительно. Общие технические требования

    МЭК 60034-5

    *

    МЭК 60034-11

    *

    МЭК 60072-1

    *

    МЭК 60072-2

    *

    МЭК 60073:2002

    ГОСТ 29149-91 Цвета световой сигнализации и кнопок

    МЭК 60309-1:1999

    ГОСТ 29146.1-91 Соединители электрические промышленного назначения. Часть 1. Общие требования

    МЭК 60364-4-41:2001

    ГОСТ Р 50571.3-94( МЭК 60364-4-41-92) Электроустановки зданий. Часть 4. Требования по обеспечению безопасности. Защита от поражения электрическим током

    МЭК 60364-4-43:2001

    ГОСТ Р 50571.5-95 (МЭК 60364-4-43-77) Электроустановки зданий. Часть 4. Требования по обеспечению безопасности. Защита от сверхтока

    МЭК 60364-5-52:2001

    ГОСТ Р 50571.15-97( МЭК 60364-5-52-93) Электроустановки зданий. Часть 5. Выбор и монтаж электрооборудования. Глава 52. Электропроводки

    МЭК 60364-5-53:2002

    *

    МЭК 60364-5-54:2002

    ГОСТ Р 50571.10-96( МЭК 60364-5-54-80) Электроустановки зданий. Часть 5. Выбор и монтаж электрооборудования. Глава 54. Заземляющие устройства и защитные проводники

    МЭК 60364-6-61:2001

    ГОСТ Р 50571.16-99 Электроустановки зданий. Часть 6. Испытания. Глава 61. Приемо-сдаточные испытания

    МЭК 604 17-DB 2002

    *

    МЭК 60439-1:1999

    ГОСТ Р 51321.1-2000 Устройства комплектные низковольтные распределения и управления. Часть 1.Устройства, испытанные полностью или частично. Общие технические требования и методы испытаний

    МЭК 60446:1 999

    *

    МЭК 60447:2004

    ГОСТ Р МЭК 60447-2000 Интерфейс человеко-машинный. Принципы приведения в действие

    МЭК 60529:1999

    ГОСТ 14254-96( МЭК 529-89) Степени защиты, обеспечиваемые оболочками (Код IP)

    МЭК 60617-06:2001

    *

    МЭК 60621-3:1979

    *

    МЭК 60664-1:1992

    *

    МЭК 60947-1:2004

    ГОСТ Р 50030.1-2007( МЭК 60947-1: 2004) Аппаратура распределения и управления низковольтная. Часть 1. Общие требования

    МЭК 60947-2:2003

    ГОСТ Р 50030.2-99( МЭК 60947-2-98) Аппаратура распределения и управления низковольтная. Часть 2. Автоматические выключатели

    МЭК 60947-5-1:2003

    ГОСТ Р 50030.5.1-2005 (МЭК 60947-5-1:2003) Аппаратура распределения и управления низковольтная. Часть 5. Аппараты и коммутационные элементы цепей управления. Глава 1. Электромеханические аппараты для цепей управления

    МЭК 60947-7-1:2002

    ГОСТ Р 50030.7.1-2000 (МЭК 60947-7-1-89) Аппаратура распределения и управления низковольтная. Часть 7. Электрооборудование вспомогательное. Раздел 1. Клеммные колодки для медных проводников

    МЭК 61082-1:1991

    *

    МЭК 61082-2:1993

    *

    МЭК 61082-3:1993

    *

    МЭК 61082-4:1996

    *

    МЭК 61140:2001

    ГОСТ Р МЭК 61140-2000 Защита от поражения электрическим током. Общие положения по безопасности, обеспечиваемой электрооборудованием и электроустановками в их взаимосвязи

    МЭК 61310 -2

    ГОСТ 28690-90 Знак соответствия технических средств требованиям электромагнитной совместимости. Форма, размеры, технические требования

    МЭК 61 310 (все части за исключением части 2)

    *

    МЭК 61 346 (все части)

    *

    МЭК 61557-3:1997

    ГОСТ Р МЭК 61557-3 2006 Сети электрические распределительные низковольтные напряжением до 1000 В переменного 1500 В постоянного тока. Электробезопасность. Аппаратура для испытаний, измерения и контроля средств защиты. Часть 3. Полное сопротивление контура

    МЭК 61 558-1: 1997

    *

    МЭК 61558-2-6

    *

    МЭК 61984:2001

    *

    МЭК 62023:2000

    *

    МЭК 62027:2000

    *

    МЭК 62061:2005

    *

    МЭК 62079:2001

    *

    ИСО 7000:2004

    *

    ИСО 12100-1:2003

    *

    ИСО 12100-2:2003

    *

    ИСО 13849-1:1999

    *

    ИСО 13849-2:2003

    *

    ИСО 13850:1996

    *

    *Соответствующий национальный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов

    <2>Библиография

    [1] МЭК 60038:2002

    Стандартные напряжения

    [2] МЭК 60204-11:2000

    Безопасность машин. Электрическое оборудование машин. Часть 11. Требования к высоковольтному оборудованию на напряжения свыше 1000 В переменного тока или 1500 В постоянного тока, но не свыше 36 кВ

    [3] МЭК 60204-31:1996

    Электрооборудование промышленных машин. Частные требования к швейным машинам, установкам и системам

    [4] МЭК 60204-32:1998

    Безопасность оборудования. Электрооборудование промышленных  машин. Часть 32. Требования к грузоподъемным машинам

    [5] МЭК 61000-6-1:1997

    Совместимость технических средств электромагнитная. Часть 6. Общие требования. Секция 1. Устойчивость к электромагнитным помехам в жилой, коммерческой и среде легкой индустрии

    [6] МЭК 61000-6-2:2005

    Совместимость технических средств электромагнитная. Часть 6-2. Общие требования. Устойчивость к электромагнитным помехам в промышленных зонах

    [7] СИСПР 61000-6-3:1996

    Совместимость технических средств электромагнитная. Часть 6. Общие требования. Секция 3. Нормы эмиссии для жилых, коммерческих и среды легкой индустрии

    [8] МЭК 61000-6-4:1997

    Совместимость технических средств электромагнитная. Часть 6. Общие требования. Секция 4. Эмиссия помех в промышленных зонах

    [9] МЭК 61000-5-2:1997

    Электромагнитная совместимость. Часть 5. Монтаж и снижение помех в проводке. Раздел 2. Заземление и скрутка

    [10] МЭК 61496-1:2004

    Безопасность машин. Электрочувствительное защитное оборудование. Часть 1. Общие требования и испытания

    [11] МЭК 61800-3:2004

    Электроприводы регулируемые. Часть 3. Требования по электромагнитной совместимости и методы испытаний

    [12] МЭК 60947-5-2:1997

    Аппараты коммутационные и управления низковольтные. Часть 5-2. Устройства управления и переключатели. Выключатели конечные Дополнение 1 (1999) Дополнение 2 (2003)

    [13] ИСО 14118:2000

    Безопасность машин. Предотвращение непредусмотренного пуска

    [14] ИСО 13851:2002

    Безопасность машин. Средства управления обоими руками. Функциональные аспекты и принципы проектирования

    [15] ИСО 14122 серия

    Безопасность машин. Средства постоянного доступа к машине

    [16]СЕНЕЛЕК НD 516 S2

    Руководство по применению гармонизированных кабелей

    [17] МЭК 60287 (все части)

    Кабели. Расчет номинальных токов нагрузок в условиях установившегося режима

    [18] МЭК 60757:1983

    Коды для обозначения цветов

    [19] МЭК 60332 (все части)

    Испытания на огнестойкость электрических и оптических кабелей

    [20] МЭК 61084-1: 1991

    Кабельные проводящие и канализирующие системы для электрического монтажа. Часть 1. Основные требования

    [21] МЭК 60364 (все части)

    Электроустановки зданий

    [22] МЭК 61557 (все части)

    Безопасность в низковольтных  системах  электроснабжения   напряжением до 1000 В переменного тока и до 1500 В постоянного тока. Оборудование для проведения испытаний, измерений и контроля исполнения защитных функций

    [23] МЭК 60228:2004

    Жилы токопроводящие изолированных кабелей

    [24] МЭК 61200-53:1994

    Устройства электрические. Часть 53. Выбор и монтаж электрооборудования. Аппаратура коммутационная и управления

    [25] МЭК 61180-2:1994

    Техника для проведения высоковольтных испытаний низковольтного электрооборудования. Часть 2. Испытательное оборудование

    [26] МЭК 60335 (все части)

    Бытовое и аналогичное ему применение электричества. Безопасность

    [27] МЭК 60269-1:1998

    Предохранители низковольтные. Часть 1. Общие требования

    [28] ИСО 14121:1999

    Безопасность машин. Принципы оценки риска

    [29] ИСО 14119:1998

    Безопасность машин. Блокировочные устройства для ограждений. Принципы конструкции и выбора

    <2>

    Источник: ГОСТ Р МЭК 60204-1-2007: Безопасность машин. Электрооборудование машин и механизмов. Часть 1. Общие требования оригинал документа

    Русско-английский словарь нормативно-технической терминологии > Общее

  • 9 колокейшн

    1. colocation
    2. collocation
    3. co-location

     

    колокейшн
    размещение сервера
    Услуга по размещению вашего серверного оборудования на телекоммуникационном узле, имеющем высокоскростное подключение к сети Интернет, обеспечению технических условий функционирования оборудования, таких как стабильное электропитание, оптимальная температура и влажность, круглосуточный мониторинг состояния.
    [ http://your-hosting.ru/terms/c/colloc/]

    размещение физических серверов
    со-размещение

    Размещение оборудования Заказчика на площадях Провайдера, а также предоставление последним сервисных услуг по инсталляции, настройке, управлению и обеспечению безопасности установленного оборудования на базе фиксированной арендной платы.
    [ http://www.outsourcing.ru/content/glossary/A/page-1.asp]

    совместное размещение
    Размещение оборудования электросвязи принадлежащего разным компаниям-операторам в одном помещении или здании (МСЭ-Т K.58).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Что такое "колокейшн"? И чем отличаются друг от друга colocation, co-location и collocation?

    Вообще, все эти слова означают одно — размещение сервера клиента на технической площадке провайдера. Техническая площадка — это специализированное помещение с гарантированным электропитанием, поддержанием достаточно низкого уровня температуры, с охраной, системой пожаротушения и так далее. По сути, это узел связи. Разница в написании слова «colocation» возникла очень давно, причем по вполне естественным причинам. В оригинале, по-английски, верны все три написания этого слова. Поэтому все пишут его так, как привыкли. Вот и все.

    Чем же отличается колокейшн от хостинга?


    Colocation — это размещение своего оборудования (сервера) на технической площадке провайдера. Это действительно похоже на хостинг, когда вы размещаете свой веб-ресурс у провайдера. Однако виртуальный хостинг — это когда на провайдерской машине находятся сотни сайтов его клиентов, а colocation — когда клиент устанавливает своей сервер у провайдера и использует все его ресурсы только для размещения своего собственного сайта.

    Как правило, для colocation применяются специализированные серверы, которые собираются в промышленных корпусах шириной 19 дюймов, предназначенных для монтажа в специальную стойку. Еще одна характеристика габаритов корпуса — высота. Она измеряется в юнитах (unit). Это порядка 45 миллиметров. Сервера бывают размером в 1 юнит (1U), 2 юнита (2U), 4 юнита (4U) и так далее. Как правило, сейчас клиенты размещают серверы в 1U-корпусах, так как с пользователей взимается плата за размер сервера пропорционально количеству юнитов. Например, 1U стоит одно количество денег, а 2U — в два раза большее. На деле, в 1U корпусе можно собрать как очень мощный двухпроцессорный сервер с двумя-тремя дисками, так и "слабенький" недорогой сервер, которого, тем не менее, хватит для размещения большинства проектов.

    Серверы для colocation отличаются от обычных компьютеров, кроме необычного корпуса, материнской платой. Существуют специальные серверные материнские платы, которые содержат прямо на себе весь необходимый набор комплектующих — сетевые карты, видеокарты, контроллеры жестких дисков SCSI/ATA/SATA и так далее. Кроме того, к производству таких материнских плат предъявляются повышенные требования по качеству.

    Вообще, сервер можно как собрать "руками" самостоятельно, так и купить готовый. Однако нужно помнить о том, что сервер отличается от обычного компьютера тем, что он постоянно работает, причем с серьезной нагрузкой. Работает без перерывов годами. Соответственно, нужно думать о необходимом количестве специальных вентиляторов, продумать прохождение воздушных потоков внутри сервера и так далее. Все эти моменты уже учтены в готовых серверах. Это очень важно.

    Как правило, для colocation применяются специализированные серверы, которые собираются в специальных промышленных корпусах шириной 19 дюймов, и предназначены такие корпуса для монтажа в специальную стойку

    В какой ситуации для клиента имеет смысл переходить на колокейшн?


    Основных причин для перехода с виртуального хостинга на colocation две:

    1. Ваш веб-проект настолько вырос, что потребляет столько ресурсов, сколько ему не могут предоставить на хостинговой машине провайдера. Мы помним, что на каждой хостинговой машине, кроме вас, "живет" еще несколько сотен серверов. Если проект большой, посещаемый, требует много вычислительных ресурсов, рано или поздно он начинает "тормозить" на "общем" хостинге. Да, возможно, что хостинг-провайдер просто поместил на физический сервер слишком много виртуальных веб-серверов, но зачастую это все же не так. Как только сервер начинает "тормозить" на хостинге, нужно заняться оптимизацией скриптов и запросов к базе данных. Если это не помогает, то нужно задумываться о colocation, изучать эту возможность, не пора ли действительно брать отдельный сервер.

    2. Проекту нужно много дискового пространства. Сейчас на хостинге предлагают 500 мегабайт места или даже 1 Гб. Есть провайдеры, которые предлагают и больше. Однако разместить хотя бы 5 Гб на виртуальном хостинге уже просто нереально. Кстати, как правило, проекты, которым нужно много места, сталкиваются и с проблемами производительности, ведь эти данные не просто лежат на диске — с ними работают посетители. Много данных, надо полагать, предполагает наличие большого количества посещений. Ведь эти данные размещаются, чтобы люди их смотрели, а не просто так. На colocation же в вашем распоряжении окажется весь жесткий диск сервера или даже несколько дисков — сколько пожелаете и купите. Диски емкостью 100-150 Гб, выполненные по технологии SATA, стоят чуть более ста долларов. Более быстрые SCSI-диски подороже. Все это делает colocation очевидной возможностью для развития проектов, которые требуют много места. В конце концов, аренда многих гигабайт места на сервере у хостинг-провайдера по затратам делает услугу виртуального хостинга очень похожей на colocation или хотя бы сравнимой.

    Насколько колокейшн дороже обычного хостинга?


    Как правило, за пользование виртуальным хостингом взимается некая фиксированная плата, которая составляет несколько долларов в месяц. Кроме того, пользователь может приобрести дополнительные услуги. Например, больше дискового пространства, больше почтовых ящиков и так далее. Структура платежей в пользу хостинг-провайдера проста и понятна.

    В случае с colocation все несколько сложнее. Пользователи colocation, во-первых, должны приобрести сервер. Как уже говорилось, цены на серверы начинаются от $800-1000. То есть цена "входного билета" значительно выше, чем в случае с виртуальным хостингом. Однако есть варианты — можно не покупать сервер, а недорого взять его в аренду у провайдера — об этом ниже.

    Также пользователи colocation платят за размещение сервера. Как правило, цена этой услуги должна составлять порядка $50 — такова рыночная цена на сегодняшний день, середину лета 2004 года. Стоимость размещения сервера плавно снижалась с годами. Так, пять лет назад размещение colocation сервера стоило не менее $200-300 в месяц. Тогда такая цена обуславливалась крайне скудным предложением и эксклюзивностью услуг, так как клиентов были единицы. Сейчас цены находятся на уровне себестоимости, и снижение цены до $20, скажем, маловероятно. Впрочем, возможны варианты, и время все расставит по местам.

    Пользователь colocation платит за трафик, который генерируется его сервером
    Также пользователь colocation платит за трафик, который генерируется его сервером. В данный момент ситуация на рынке такова, что многие провайдеры предлагают неограниченный трафик за фиксированную сумму, которая, как правило, включена в стоимость размещения оборудования, о которой писалось выше. Однако есть один момент — провайдерам выгодно, чтобы трафик, генерируемый клиентом, был российским. То есть предназначался для пользователей, которые находятся в России. Провайдеры просят, чтобы трафик, создаваемый сервером, был как минимум наполовину российским. Таково предложение компании.masterhost, например. На практике практически все пользователи легко укладываются в такое ограничение, и проблем тут нет.

    Если сравнивать стоимость размещения сайта на виртуальном хостинге и на colocation в цифрах, то хостинг для серьезного сайта в виртуальной среде стоит от $20 в месяц, а размещение собственного сервера — от $50 в месяц. Вполне сравнимые цифры, тем более что во втором случае ваш веб-сервер получает в десятки раз больше ресурсов. То есть colocation — это естественный путь развития для серьезных проектов.

    Какие особые возможности колокейшн предоставляет по сравнению с хостингом?

    Две главные возможности colocation — это несравнимо большее количество ресурсов (диска, памяти, процессорного времени) и гибкость настройки и конфигурации. На виртуальном хостинге ваш сайт находится на одной машине с еще несколькими сотнями похожих сайтов. Конечно, ресурсов вы получаете немного, но вполне достаточно для работы даже довольно серьезного ресурса. Однако, как только на сервер возникает повышенная нагрузка — например в часы пик или при резком увеличении количества посетителей по какой-то причине, — у пользователя возникают риски. Например, риск нехватки каких-то ресурсов. Риски, в общем, небольшие, но если ваш сайт — это, например, интернет-магазин, то каждая ошибка на сайте — это несделанный посетителем заказ. Стоит подумать, нужно ли рисковать в том случае, если за сравнимые деньги можно получить в пользование целый отдельный сервер.

    Гибкость. Очень часто программистам, которые работают над сайтом, нужно поставить какие-нибудь дополнительные модули или использовать нестандартное программное обеспечение. Не всегда есть возможность установить на сервер нужное ПО и настроить его так, как нужно. В случае же с colocation этой проблемы не существует в принципе, так как администратор сервера может устанавливать что угодно и настраивать ПО любым образом.

    Можно сказать, что виртуальный хостинг — это "детство" серьезных проектов, а colocation — их "зрелость". Переход на colocation — это естественный путь развития любого большого проекта, и таким веб-ресурсам однозначно нечего делать на виртуальном хостинге.

    Бывает ли колокейшн на собственных компьютерах клиентов, и есть ли в этом смысл? Как в этом случае эти компьютеры обслуживаются?

    Как правило, colocation — это именно установка собственного компьютера-сервера пользователя на площадку хостинг-провайдера. В этом случае клиент сам занимается администрированием сервера, его настройкой, а также принимает на себя риски, связанные с поломкой комплектующих. Это классический вариант. Однако в последнее время активно развивается направление аренды сервера у провайдера. Клиенту не нужно платить тысячу-полторы-две долларов за сервер. Можно его за небольшую плату арендовать у провайдера. Это интересный вариант для только запускающихся проектов, когда денег на покупку сервера еще нет. Впоследствии, как правило, можно выкупить сервер у провайдера или приобрести свой сервер независимо. Да, при аренде риски, связанные с поломкой сервера, берет на себя провайдер. То есть если провайдер сдает вам в аренду сервер, он отвечает за его работоспособность и за оперативную замену вышедших из строя комплектующих, если, не дай Бог, такое случится. Это интересный вариант, так как ехать в три ночи на другой конец города, чтобы поменять "полетевшую" память — не очень интересное занятие. А если пользователь живет в другом городе...

    Насколько часто сейчас используется колокейшн?

    Услуга многие годы развивалась. Пять лет назад клиентов colocation у провайдеров были единицы. Года три назад — десятки. Сейчас у серьезных провайдеров, занимающихся размещением серверов как отдельным бизнесом, уже сотни клиентов. Colocation используют интернет-магазины, сетевые СМИ, игровые порталы, баннерные сети, различные контент-проекты. Также многие компании выносят на colocation из своих офисов почтовые сервера и другие службы. Есть много вариантов использования colocation, и их становится все больше. Наблюдается четкая тенденция к "переезду" на colocation "выросших" из виртуального хостинга проектов, так как провайдеры предлагают не просто взять и поставить машину, а предоставляют полный комплекс услуг с администрированием клиентского сервера.

    Какие сложности возникают перед клиентом при использовании колокейшн?

    Главная проблема — необходимость наличия системного администратора, который установит и настроит операционную и хостинговую среду, а также будет потом заниматься поддержкой и администрированием системы. С одной стороны — да, это проблема. Но с другой — найти администратора несложно, и стоит это недорого. Нет необходимости, например, брать на работу "выделенного" человека. Вполне можно пользоваться и разовыми услугами по необходимости.

    Однако хостинг-провайдеры предлагают и свои собственные услуги по администрированию. Те же специалисты, которые занимаются администрированием хостинговых серверов провайдера, вполне могут заниматься и сервером клиента. Стоить это будет значительно дешевле, чем привлечение клиентом стороннего специалиста.

    Также есть проблема с "железом", которое потенциально может ломаться. Нужно брать сервер с серьезной гарантией или не покупать его, а брать в аренду у провайдера.

    Какие существуют виды оплаты при колокейшн?


    .masterhost предлагает клиентам colocation платить им за генерируемый исходящий трафик
    Те же самые, как и в случае с оплатой хостинга. По сути, система приема платежей одна и та же — как для клиентов хостинга, так и для colocation. Кстати, тут есть одна интересная возможность. Наша компания, например, предлагает клиентам colocation платить им за генерируемый исходящий трафик. То есть если у проекта много исходящего трафика, мы вполне готовы даже заплатить за него клиенту. Возможно, что и не очень много, однако это вполне позволяет снизить плату за colocation или же вообще избавиться от нее. Проекты с довольно большим трафиком могут даже заработать.

    В заключение хочу добавить несколько слов о неочевидных выгодах использования именно colocation, а не виртуального хостинга. Переходя на использование выделенного сервера для хостинга своих ресурсов, владелец сайта автоматически увеличивает посещаемость своего ресурса — просто потому что его сервер может просто физически принять и обслужить больше посетителей. Больше посетителей — это возможность показать больше рекламы, к примеру.

    Используя colocation, можно значительно наращивать ресурсы сервера. Например, если понадобилось дополнительное дисковое пространство, покупаете за $100 диск на 120 Гб, и проблема решена. Стало больше посетителей, и сервер не справляется с работой скриптов — меняем процессор на более мощный, и проблем тоже нет.

    [ http://hostinfo.ru/articles/358]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > колокейшн

  • 10 модульный центр обработки данных (ЦОД)

    1. modular data center

     

    модульный центр обработки данных (ЦОД)
    -
    [Интент]

    Параллельные тексты EN-RU

    [ http://loosebolts.wordpress.com/2008/12/02/our-vision-for-generation-4-modular-data-centers-one-way-of-getting-it-just-right/]

    [ http://dcnt.ru/?p=9299#more-9299]

    Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.

    В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.

    At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.

    В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.

    Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.

    Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.

    Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.

    Was there a key driver for the Generation 4 Data Center?

    Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
    Был ли ключевой стимул для разработки дата-центра четвертого поколения?


    If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.

    Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.

    One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:

    The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.

    Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:

    Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.

    The second worst thing we can do in delivering facilities for the business is to have too much capacity online.

    А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.

    This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
    So let’s take a high level look at our Generation 4 design

    Это заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
    Давайте рассмотрим наш проект дата-центра четвертого поколения

    Are you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.

    It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.

    From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.


    Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:

    Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.

    С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.

    Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.


    Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.

    For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.

    Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.

    Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.

    Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.

    Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.

    Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
    Мы все подвергаем сомнению

    In our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.

    В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
    Серийное производство дата центров


    In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.

    Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
    Невероятно энергоэффективный ЦОД


    And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?

    А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
    Строительство дата центров без чиллеров

    We have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.

    Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.

    By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.

    Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.

    Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.

    Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
    Gen 4 – это стандартная платформа

    Finally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.

    Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
    Главные характеристики дата-центров четвертого поколения Gen4

    To summarize, the key characteristics of our Generation 4 data centers are:

    Scalable
    Plug-and-play spine infrastructure
    Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
    Rapid deployment
    De-mountable
    Reduce TTM
    Reduced construction
    Sustainable measures

    Ниже приведены главные характеристики дата-центров четвертого поколения Gen 4:

    Расширяемость;
    Готовая к использованию базовая инфраструктура;
    Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
    Быстрота развертывания;
    Возможность демонтажа;
    Снижение времени вывода на рынок (TTM);
    Сокращение сроков строительства;
    Экологичность;

    Map applications to DC Class

    We hope you join us on this incredible journey of change and innovation!

    Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.


    Использование систем электропитания постоянного тока.

    Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!

    На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.

    So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.

    Generations of Evolution – some background on our data center designs

    Так что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
    Поколения эволюции – история развития наших дата-центров

    We thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.

    Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.

    It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.

    Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.

    We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.

    Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.

    No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.

    Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.

    As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.

    Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.

    This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.

    Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.


    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > модульный центр обработки данных (ЦОД)

  • 11 открытая архитектура

    1. open architecture
    2. OA

     

    открытая архитектура
    Компьютерная архитектура, построенная на открытых стандартах и доступная для производства и/или расширения третьим фирмам. Примером такой архитектуры является ПК IBM PC.
    [ http://www.morepc.ru/dict/]

    Основная тенденция развития технических средств (аппаратного и программного обеспечения) SCADA миграция в сторону полностью открытых систем. Открытая архитектура позволяет независимо выбирать различные компоненты системы от различных производителей; в результате расширение функциональных возможностей, облегчение обслуживания и снижение стоимости SCADA-систем.
    Ориентация на открытые архитектуры при построении систем диспетчерского управления и сбора данных позволяет разработчикам этих систем сконцентрироваться непосредственно на целевой задаче SCADA сбор и обработка данных, мониторинг, анализ событий, управление, реализация HMI-интерфейса.
    [Журнал Мир компьютерной автоматизации - Системы диспетчерского управленияи сбора данных (SCADA-системы)]
    OPC-UA обладает мощной системой безопасности; открытой архитектурой связи на любом уровне предприятия и всеми необходимыми инструментами для уровня управления предприятия.
    [«ИСУП», № 3(19)_2008]

    Интегрированная инструментальная среда Good Help проектировалась для программирования комплекта для распределенных систем I-7000, однако, обладая открытой архитектурой и наличием поддержки обмена через ОРС-сервер, может быть использована и для программирования других PC-совместимых контроллеров.
    [«ИСУП», № 3(3)_2004]
     

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > открытая архитектура

См. также в других словарях:

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»